Leadership optimize

IndyCar IT: The technology that makes Danica Patrick go

Techonology isn't all about word processing, spreadsheets, and databases. IT powers many different things, including the world of Indy Car racing. Here are some of the things that go on in the infield of an Indy Car Race

The next time you catch an Indy Racing League (IRL) telecast, check out the pits. While the cameras are likely to be following rookie sensation Danica Patrick, or 2005 Indianapolis 500 winner and likely IRL series champion Dan Wheldon, it's behind-the-scenes technology powering these racers' performance.

TechProGuild senior editor John Sheesley and I recently visited Kentucky Speedway, the one-and-a-half mile long track that hosted the IRL's AMBER Alert Portal Indy 300. We roamed garage areas, interviewed technicians, toured teams' mobile offices and studied practice and qualifying routines. And that was just Saturday.

On Sunday I had breakfast with an engineer from the Rahal Letterman Team, which fields open-wheel race cars for Patrick, Buddy Rice and Vitor Meira. Then came the race itself with its requisite pageantry, competition and calculated mayhem.

As soon as the sun appeared, infield and garage areas sprang to life. Competitors began rolling sleek cars off spotless haulers, tweaking gold-wrapped motors and transferring equipment of all kinds, shapes and sizes.

Laptops were everywhere. Each team boasts a full complement. PCs, servers and wireless technologies are used heavily throughout race weekends by engineers needing to wring the utmost performance from cutting-edge racecars. Information technology is pressed into duty for a number of tasks.

At the forefront is engineers' need to make sense of data reported by electronics systems onboard each racecar. Data acquisition engineers --also known as DAGs, for data acquisition geek - are responsible for ensuring the data stream and collecting critical metrics. It's common, too, to see a representative from the major motor manufacturers - Chevy, Honda, Toyota - in each team's pit. The motor reps also press laptops into service as they monitor engine performance.

Larger multicar teams also maintain servers, in addition to gaggles of laptops, in the pits. Back in the garage area, typically yet another set of servers is housed in team transport trucks.

Team transports: Not your Cousin Eddie's RV

John and I spoke with several team engineers, many of whom assume IT responsibilities in addition to other race-related tasks. A few invited us in to see their offices firsthand. And that's what these transports are: well-equipped offices on wheels. These are no run-of-the mill RVs, but top-dollar tractor-trailers. They house everything from servers to backup racecars and serve as nerve centers for each team's operations. (View the Trackside Technology Photo Gallery for images from the track, including photographs of team transports).

Each hauler sports numerous external ports that can be connected to landlines and Ethernet cables, which crisscross the infield's hospitality and garage areas like spaghetti. The trailers also house "DAGtuaries," or the workspaces where each race team's engineers pour over gigabytes worth of practice session data.

While plush, space is still at a premium. Transporters must also house mechanics' benches, tools, spare motors and more. Picture squeezing four or five employees, and their workstations into an area a little smaller than a single typical cube and you have a DAGtuary. It's in these tight spaces where some of the most critical race weekend work is performed.

Crunching data

Most IndyCars carry hardware modules from Pi Research. The devices monitor numerous sensors and track critical metrics, such as engine performance, tire pressures and chassis behavior. The onboard electronics systems record the sensor information to a data acquisition box. Following test sessions, the data is dumped to technician's laptops.

All of the data--and the data accumulates quickly with 32 different sensors each tracking numerous metrics every second--is offloaded from the onboard data acquisition box to engineers' laptops via Ethernet cable. When actually racing on track, transmitters in each car send a constant stream of telemetry back to receivers in each team's pit. Rahal Letterman Racing, whose Patrick placed the number 16 Honda machine on the pole, employs UHF transmitters.

"There's a receiver radio with a serial stream, basically, that goes to the laptop," said Engineer Rob Trinkner, who doubles as the team's IT manager. "One reason we choose to go with the UHF band is because of its penetrating abilities. 802.11 is very directional, in that its 2.4 GHz high frequencies are typically very directional. [They] are not good at penetrating objects."

Infield buildings, trucks, and concrete retaining walls, of course, all present obstructions that interfere with reception. Choosing dependability over throughput has its disadvantages.

"You get into a bandwidth issue on the telemetry where you can't send everything back to the pits at the rate you want to send it," said Jim Foley, Assistant Racing Engineer with Rahal Letterman Racing. "So, there are certain channels you decide I can't look at--the trace of shock displacement - real time and make anything out of it. I need to log that and look at it after the car's [done] running. But other things, like what gear position he's in or what his steering angle is and stuff like that, that's stuff we can absorb real time. It's a bandwidth issue."

The data teams transmit is so sensitive, and would provide significant competitive advantages to other teams if revealed, that it's encrypted. Next to wing angles, which are carefully concealed beneath covers almost any time a car isn't racing, the data returned by onboard systems is the next best-kept secret.

"It's like anything," added Trinkner. "If you really wanted it, you could probably get it with enough time and enough packets of data to analyze. But, typically, by the time's somebody's decrypted that data--in the environment we're in--people are too busy doing other things."

Figure A

The Pennzoil team monitors telemetry from its racecar during the AMBER Alert Portal Indy 300.

Thus, in addition to employing and maintaining 802.11 transmissions for communication between their peer-to-peer workgroups or clients and servers (larger teams run larger networks; smaller teams run simple workgroups), engineers must maintain UHF data streams to ensure the vital telemetry is captured, while also managing digital keys.

Those responsibilities are just the beginning. Trackside technologists' most important duties are collecting critical data from the racecar and quickly making sense of that information. Teams typically receive only an hour between practice sessions, as well as a short window before qualifying. Conditions become even more hectic in the heat of a race.

"One of our biggest challenges is taking an enormous amount of information and boiling it down," added Foley. "That's what's really, really hard about this business; to not get absorbed in some squiggly line that isn't going to tell you anything in the half-an-hour you have."

Teams use a variety of tools, including specialized applications from Pi Research, to determine how well the car's working.

"But as with everything," Foley said, "you get to a point where there're certain things you want to customize, and to go through an outside vendor to get that done isn't necessarily a timely thing. We'll use Excel a lot, Visual Basic a lot. We'll use MATLAB a lot. We'll write our own routines and our own macros. And the key to this is when you have an hour in between sessions and it's going to take half-an-hour to make any changes you want to implement. So, now you have half-an-hour to post-process a half-a-gig worth of data. You can't be just thumbing through it. You have to be writing macros that are going to spit out answers."

Preparation is one way teams attempt to minimize the changes that need to be made between practice sessions.

"In this business, a lot of what we end up doing is due to good bookkeeping, as we say," added Foley. "You're always referencing what happened last year. What does the data tell you? If the result last year was good, which it was for us here last year, then you want to heavily reference that. But then you have to sift through everything and go 'OK, but what is different that I have to compensate for?' If you just show up with the same thing you had last year, well then, you're a year behind."

Figure B

Danica Patrick consults with her engineers following a practice session. Ultimately, she got the setup right and earned the pole position for the AMBER Alert Portal Indy 300.

Trackside IT proves paramount

Just how important did all the data collection and analysis prove in the AMBER Alert Portal Indy 300 race? Both Patrick, who's best practice lap (rain canceled qualifying) made her the first woman ever to earn multiple IndyCar Series poles, and race winner Scott Sharp credited their engineering teams with powering their successes.

Figure C

Scott Sharp celebrates his victory in the AMBER Alert Portal Indy 300.

"My engineer, Ray (Leto) came up with a good plan for this weekend," said Patrick. "I just went 'OK.' He planned it right."

Scott Sharp, who won after leading the last 60 laps with Rahal Letterman Racing's Meira breathing hard on his tail, attributed the win to his technical team's contributions.

"I can't say enough about my engineering staff," Sharp said immediately after the race. "We huddled together between warm-up and the race and made lots of changes. Once you change the car and you don't have a chance to practice it again you're probably going to have to tweak it a bit. It took us a couple pit stops to get the car right and it just came alive."

2 comments
tdeshetler
tdeshetler

I've always been a fan of racing and now would like to contribute my skills to helping advance technology. What's the best way to get your foot into the door with a team or IRL itself?

HAL 9000
HAL 9000

This isn't at all fun or anything it's just Plain & Simple [b]Bloody Hard Work[/b] with impossible deadlines and unacceptable working conditions that can never be meet. You are also on the road a long time every year and very rarely get home so you have no Life outside work and even then very little life at all because you are on call 24/7 if not longer. The Mechanical work is now so complicated that you need a Degree in Electronic Engineering to even pick up a spanner let alone touch anything and the Electronics are so complicated that they need a Full Time Team to support. Indy Cars are also not the most advanced units ever made either as they have few Sensors in comparison to F1 where it takes a day to replace a single suspension component and recalibrate the sensors. Everything in a F1 car has several sensors the Indy Cars in comparison are easy to work on and they are just [b]Impossible.[/b] While it looks a like a great life on TV it's anything but as you are constantly on the go and never get enough time to do the job as well as is required and all the time you have it hanging over your head that if you Stuff Up someone may die as a result of your actions. Even in the Off Season there is so much development being done that you will see very little outside the Teams Head Office/Workshop. If you where to work in the Electronics Side of the Team you are not like a IT Tech as there are several things that you need to do all of which are a Full Time Job anywhere else. If you wish to run Classic Race Cars you look at the ones that where made before 2 way Telemetry as they will be running for years to come and be cheap in comparison. The current crop of Cars will never be used for Classic Racing as they will be impossible to keep on the track. If you even consider looking at this as a possible alternative to work you need to see a [b]Shrink Last Year[/b] where you can be treated for your delusions and curred before being adversely affected and losing whatever life that you currently have. Col