European Design and Automation Association

Displaying 1-40 of 159 results

  • White Papers // Dec 2012

    Sensor-Wise Methodology to Face NBTI Stress of NoC Buffers

    Networks-on-Chip (NoCs) are a key component for the new many-core architectures, from the performance and reliability standpoints. Unfortunately, continuous scaling of CMOS technology poses severe concerns regarding failure mechanisms such as NBTI and stress-migration. Process variation makes harder the scenario, decreasing device lifetime and performance predictability during chip fabrication. This...

    Provided By European Design and Automation Association

  • White Papers // Mar 2012

    Compositional System-Level Design Exploration With Planning of High-Level Synthesis

    The growing complexity of System-on-Chip (SoC) design calls for an increased usage of transaction-level modeling (TLM), high-level synthesis tools, and reuse of pre-designed components. In the framework of a compositional methodology for efficient SoC design exploration the authors present three main contributions: a concise library format for characterization and reuse...

    Provided By European Design and Automation Association

  • White Papers // Feb 2012

    Run-time Power-gating in Caches of GPUs for Leakage Energy Savings

    In this paper, the authors propose a novel micro-architectural technique for run-time power-gating caches of GPUs to save leakage energy. The L1 cache (private to a core) can be put in a low-leakage sleep mode when there are no ready threads to be scheduled, and the L2 cache can be...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Using Multi-objective Design Space Exploration to Enable Run-time Resource Management for Reconfigurable Architectures

    Reconfigurable systems represent as a suitable option to meet performance, power, and cost constraints that characterize the challenge of future supercomputing, provided that reconfiguration overhead is balanced with respect to computationally intensive workload. Resource run-time managers have been shown particularly effective for coordinating the usage of the hardware resources by...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Programmability and Performance Portability Aspects of Heterogeneous Multi-/Manycore Systems

    The need to improve the performance/energy ratio has caused a general trend towards increased heterogeneity in multi- and manycore systems, where general-purpose computing cores are complemented with energy-efficient special-purpose accelerators located either on or off-chip, as in, e.g., GPU-supported systems. However, this trend has also brought new, fundamental problems for...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Component-Based and Aspect-Oriented Methodology and Tool for Real-Time Embedded Control Systems Design

    In this paper, the authors present component-based and aspect-oriented methodology and tool for designing and developing Real-Time Embedded Control Systems (RTECS). This methodology defines a component model for describing modular and reusable software to cope with the increasing complexity of embedded systems. It proposes an aspect-oriented approach to address explicitly...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    An Adaptive Approach for Online Fault Management in Many-Core Architectures

    In this paper, the authors present a dynamic scheduling solution to achieve fault tolerance in many-core architectures. Triple Modular Redundancy is applied on the multi-threaded application to dynamically mitigate the effects of both permanent and transient faults, and to identify and isolate damaged units. The approach targets the best performance,...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    An Hybrid Architecture to Detect Transient Faults in Microprocessors: An Experimental Validation

    Due to performance issues commercial off the shelf components are becoming more and more appealing in application fields where fault tolerant computing is mandatory. As a result, to cope with the intrinsic unreliability of such components against certain fault types like those induced by ionizing radiations, cost-effective fault tolerant architectures...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    A Block-Level Flash Memory Management Scheme for Reducing Write Activities in PCM-based Embedded Systems

    In this paper, the authors target at an embedded system with Phase Change Memory (PCM) and NAND flash memory. Although PCM is a promising main memory alternative and is recently introduced to embedded system designs, its endurance keeps drifting down and greatly limits the lifetime of the whole system. Therefore,...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Architecting a Common-Source-Line Array for Bipolar Non-Volatile Memory Devices

    Traditional array organization of bipolar nonvolatile memories such as STT-MRAM and memristor utilizes two bitlines for cell manipulations. With technology scaling, such bitline pair will soon become the bottleneck of density improvement. In this paper, the authors propose a novel common-source-line array architecture, which uses a shared source-line along the...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    A Fast, Source-synchronous Ring-based Network-on-Chip Design

    Most Network-on-Chip (NoC) architectures are based on a mesh-based interconnection structure. In this paper, the authors present a new NoC architecture, which relies on source synchronous data transfer over a ring. The source synchronous ring data is clocked by a resonant clock, which operates significantly faster than individual processors that...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Area Efficient Asynchronous SDM Routers Using 2-Stage Clos Switches

    Asynchronous on-chip networks are good candidates for multi-core applications requiring low-power consumption. Asynchronous Spatial Division Multiplexing (SDM) routers provide better throughput with lower area overhead than asynchronous virtual channel routers; however, the area overhead of SDM routers is still significant due to their high-radix central switches. A new 2-stage Clos...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Bloom Filter-Based Dynamic Wear Leveling for Phase-Change RAM

    Phase Change Memory (PCM) is a promising candidate of emerging memory technology to complement or replace existing DRAM and NAND Flash memory. A key drawback of PCMs is limited write endurance. To address this problem, several static wear-leveling methods that change logical to physical address mapping periodically have been proposed....

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    A Compression-based Area-efficient Recovery Architecture for Nonvolatile Processors

    Non-volatile processor has become an emerging topic in recent years due to its zero standby power, resilience to power failures and instant on feature. This paper first demonstrated a fabricated nonvolatile 8051-compatible processor design, which indicates the ferroelectric nonvolatile version leads to over 90% area overhead compared with the volatile...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    A Network-on-Chip-Based Turbo/LDPC Decoder Architecture

    The current convergence process in wireless technologies demands for strong efforts in the conceiving of highly flexible and interoperable equipments. This contribution focuses on one of the most important baseband processing units in wireless receivers, the forward error correction unit, and proposes a Network-on-Chip (NoC) based approach to the design...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    SAFER PATH: Security Architecture using Fragmented Execution and Replication for Protection Against Trojaned Hardware

    Ensuring electronic components are free from Hardware Trojans is a very difficult task. Research suggests that even the best pre- and post-deployment detection mechanisms will not discover all malicious inclusions, nor prevent them from being activated. For economic reasons electronic components are used regardless of the possible presence of such...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Predicting Best Design Trade-offs: A Case Study in Processor Customization

    Given the high level description of a task, many different hardware modules may be generated while meeting its behavioral requirements. The characteristics of the generated hardware can be tailored to favor energy efficiency, performance and accuracy or die area. The inherent trade-offs between such metrics need to be explored in...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Ultra Low Power Litho Friendly Local Assist Circuitry For Variability Resilient 8T SRAM

    Read-decoupled 8T SRAM cell offers a higher degree of variability resilience compared to 6T SRAM cell at the expense of an increased area overhead. This paper presents litho friendly circuit techniques for variability resilient low power 8T SRAM. The new local assist circuitry achieves a state-of-the-art low energy and variability...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Sliding-Mode Control to Compensate PVT Variations in Dual Core Systems

    In this paper, the authors present a novel robust sliding-mode controller for stabilizing supply voltage and clock frequency of dual core processors determined by Dynamic Voltage and Frequency Scaling (DVFS) methods in the presence of systematic and random variations. They show that maximum rejection for Process, Voltage and Temperature (PVT)...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    MAPG: Memory Access Power Gating

    In mobile systems, the problems of short battery life and increased temperature are exacerbated by wasted leakage power. Leakage power waste can be reduced by power-gating a core while it is stalled waiting for a resource. In this paper, the authors propose and model Memory Access Power Gating (MAPG), a...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Automated Construction of a Cycle-Approximate Transaction Level Model of a Memory Controller

    Modern System-on-Chip (SoC) designs are very complex and, thus, very hard to simulate and verify. The conventional Register Transfer Level (RTL) modeling is of too fine granularity to allow whole system designs to be rapidly simulated or used as virtual prototypes. Therefore, another more abstract level of modeling, namely Electronic...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Refinement of UML/MARTE Models for the Design of Networked Embedded Systems

    Network design in distributed embedded applications is a novel challenging task which requires the extraction of communication requirements from application specification and the choice of channels and protocols connecting physical nodes. These issues are faced in the paper by adopting UML/ MARTE as specification front-end and repository of refined versions...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    CrashTest'ing SWAT: Accurate, Gate-Level Evaluation of Symptom-Based Resiliency Solutions

    Current technology scaling is leading to increasingly fragile components, making hardware reliability a primary design consideration. Recently researchers have proposed low-cost reliability solutions that detect hardware faults through software-level symptom monitoring. SWAT (SoftWare Anomaly Treatment), one such solution, demonstrated with microarchitecture-level simulations that symptom-based solutions can provide high fault coverage...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Exploring Pausible Clocking Based GALS Design for 40-nm System Integration

    Globally Asynchronous Locally Synchronous (GALS) design has attracted intensive research attention during the last decade. Among the existing GALS design solutions, the pausible clocking scheme presents an elegant solution to address the cross-clock synchronization issues with low hardware overhead. This paper explored the applications of pausible clocking scheme for area/power...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Static Analysis of Asynchronous Clock Domain Crossings

    Clock Domain Crossing (CDC) signals pose unique and challenging issues in complex designs with multiple asynchronous clocks running at frequencies as high as multiple giga hertz. Designers can no longer rely on ad hoc approaches to CDC analysis. This paper describes a methodical approach for static analysis of structural issues...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Workload-Aware Voltage Regulator Optimization for Power Efficient Multi-Core Processors

    Many leading CPU manufacturers today sell multi-core processors which leverage technology scaling to pack multiple processing units or cores in a single die. Modern multi-core processors use power management techniques such as Dynamic Voltage and Frequency Scaling (DVFS) and Clock Gating (CG) which cause the processor to operate in various...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Selective Flexibility: Breaking the Rigidity of Datapath Merging

    Hardware specialization is often the key to efficiency for programmable embedded systems, but comes at the expense of flexibility. This paper combines flexibility and efficiency in the design and synthesis of domain-specific datapaths. The authors merge all individual paths from the Data Flow Graphs (DFGs) of the target applications, leading...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    An Out-of-Order Superscalar Processor on FPGA: The ReOrder Buffer Design

    Embedded systems based on FPGA (Field-Programmable Gate Arrays) must exhibit more performance for new applications. However, no high-performance superscalar soft processor is available on the FPGA, because the superscalar architecture is not suitable for FPGAs. High-performance superscalar processors execute instructions out-of-order and it is necessary to re-order instructions after execution....

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Partial Online-Synthesis for Mixed-Grained Reconfigurable Architectures

    Processor architectures with Fine-Grained Reconfigurable Accelerators (FGRAs) allow for a high degree of adaptivity to address varying application requirements. When processing computation intensive kernels, multiple FGRAs may be used to execute a complex function. In order to exploit the adaptivity of a fine-grained reconfigurable fabric, a runtime system should decide...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Congestion-Aware Scheduling for NoC-based Reconfigurable Systems

    Network-on-Chip (NoC) is becoming a promising communication architecture in place of dedicated interconnections and shared buses for embedded systems. Nevertheless, it has also created new design issue such as communication congestion and power consumption. A major factor leading to communication congestion is mapping of application tasks to NoC. Latency, throughput,...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Custom On-Chip Sensors for Post-Silicon Failing Path Isolation in the Presence of Process Variations

    In this paper, the authors offer a framework for predicting the delays of individual design paths at the post-silicon stage which is applicable to post-silicon validation and delay characterization. The prediction challenge is mainly due to limited access for direct delay measurement on the design paths after fabrication, combined with...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    An Energy Efficient DRAM Subsystem for 3D integrated SoCs

    Energy efficiency is the key driver for the design optimization of System-on-Chips (SoCs) for mobile terminals (Smartphone's and tablets). 3D integration of heterogeneous dies based on TSV (through silicon via) technology enables stacking of multiple memory or logic layers and has the advantage of higher bandwidth at lower energy consumption...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    On-Chip Source Synchronous Interface Timing Test Scheme with Calibration

    In this paper, the authors present an on-chip test circuit with a high resolution for testing source synchronous interface timing. Instead of a traditional strobe-scanning method, an on-chip delay measurement technique which detects the timing mismatches between data and clock paths is developed. Using a programmable pulse generator, the timing...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Design of Low-Complexity Digital Finite Impulse Response Filters on FPGAs

    FIR filters are widely used in Digital Signal Processing (DSP) applications due to their stability and linear-phase property. The Multiple Constant Multiplications (MCM) operation, which realizes the multiplication of a set of constants by a variable, has a significant impact on the complexity and performance of the digital Finite Impulse...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Salvaging Chips with Caches beyond Repair

    Defect density and variabilities in values of parameters continue to grow with each new generation of nano-scale fabrication technology. In SRAMs, variabilities reduce yield and necessitate extensive interventions, such as the use of increasing numbers of spares to achieve acceptable yield. For most microprocessor chips, the number of SRAM bits...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    A Flit-level Speedup Scheme For Network-on-Chips Using Self-Reconfigurable Bi-directional Channels

    In this paper, the authors propose a flit-level speedup scheme to enhance the Network-on-Chip (NoC) performance utilizing bidirectional channels. In addition to the traditional efforts on allowing flits of different packets using the idling internal and external bandwidth of the bi-directional channel, their proposed flit-level speedup scheme also allows flits...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Asymmetry of MTJ Switching and Its Implication to STT-RAM Designs

    As one promising candidate for next-generation nonvolatile memory technologies, Spin-Transfer Torque Random Access Memory (STT-RAM) has demonstrated many attractive features, such as nanosecond access time, high integration density, non-volatility, and good CMOS process compatibility. In this paper, the authors reveal an important fact that has been neglected in STT-RAM designs...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Comparative Analysis of SRAM Memories Used as PUF Primitives

    In this paper, the authors present the results of their investigations into the reliability and uniqueness of Static Random Access Memories (SRAMs) in different technology nodes when used as a Physically Unclonable Function (PUF). The comparative analysis that can be found in this publication is the first ever of its...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    A Sensor-Assisted Self-Authentication Framework for Hardware Trojan Detection

    In this paper, the authors offer a framework which does not rely on a Golden IC (GIC) during Hardware Trojan (HT) detection. GIC is a Trojan-free IC which is required, in all existing HT frameworks, as a reference point to verify the responses obtained from an IC under authentication. However,...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Towards Improving Simulation of Analog Circuits using Model Order Reduction

    Large analog circuit models are very expensive to evaluate and verify. New techniques are needed to shorten time-to-market and to reduce the cost of producing a correct analog integrated circuit. Model order reduction is an approach used to reduce the computational complexity of the mathematical model of a dynamical system,...

    Provided By European Design and Automation Association

  • White Papers // Dec 2012

    Sensor-Wise Methodology to Face NBTI Stress of NoC Buffers

    Networks-on-Chip (NoCs) are a key component for the new many-core architectures, from the performance and reliability standpoints. Unfortunately, continuous scaling of CMOS technology poses severe concerns regarding failure mechanisms such as NBTI and stress-migration. Process variation makes harder the scenario, decreasing device lifetime and performance predictability during chip fabrication. This...

    Provided By European Design and Automation Association

  • White Papers // Mar 2012

    Compositional System-Level Design Exploration With Planning of High-Level Synthesis

    The growing complexity of System-on-Chip (SoC) design calls for an increased usage of transaction-level modeling (TLM), high-level synthesis tools, and reuse of pre-designed components. In the framework of a compositional methodology for efficient SoC design exploration the authors present three main contributions: a concise library format for characterization and reuse...

    Provided By European Design and Automation Association

  • White Papers // Jan 2011

    Impact of Process Variation on Endurance Algorithms for Wear-Prone Memories

    Non-volatile memories, such as Flash and Phase-Change Memory, are replacing other memory and storage technologies. Although these new technologies have desirable energy and scalability properties, they are prone to wear-out due to excessive write operations. Because wear-out is an important phenomenon, a number of endurance management schemes have been proposed....

    Provided By European Design and Automation Association

  • White Papers // Feb 2010

    Leveraging Application-Level Requirements in the Design of a NoC for a 4G SoC - A Case Study

    In this paper, the authors examine the design process of a Network on-Chip (NoC) for a high-end commercial System on-Chip (SoC) application. They present several design choices and focus on the power optimization of the NoC while achieving the required performance. They design steps include module mapping and allocation of...

    Provided By European Design and Automation Association

  • White Papers // Apr 2011

    Data-Oriented Performance Analysis of SHA-3 Candidates on FPGA Accelerated Computers

    The SHA-3 competition organized by NIST has triggered significant efforts in performance evaluation of cryptographic hardware and software. These benchmarks are used to compare the implementation efficiency of competing hash candidates. However, such benchmarks test the algorithm in an ideal setting, and they ignore the effects of system integration. In...

    Provided By European Design and Automation Association

  • White Papers // Feb 2010

    pSHS: A Scalable Parallel Software Implementation of Montgomery Multiplication for Multicore Systems

    Parallel programming techniques have become one of the great challenges in the transition from single-core to multicore architectures. In this paper, the authors investigate the parallelization of the Montgomery multiplication, a very common and timeconsuming primitive in public-key cryptography. A scalable parallel programming scheme, called pSHS, is presented to map...

    Provided By European Design and Automation Association

  • White Papers // Dec 2010

    Architectures and Modeling of Predictable Memory Controllers for Improved System Integration

    Designing multi-processor systems-on-chips becomes increasingly complex, as more applications with real-time requirements execute in parallel. System resources, such as memories, are shared between applications to reduce cost, causing their timing behavior to become inter-dependent. Using conventional simulation-based verification, this requires all concurrently executing applications to be verified together, resulting in...

    Provided By European Design and Automation Association

  • White Papers // Dec 2010

    An FPGA Bridge Preserving Traffic Quality of Service for On-Chip Network-Based Systems

    FPGA prototyping of recent large Systems on Chip (SoCs) is very challenging due to the resource limitation of a single FPGA. Moreover, having external access to SoCs for verification and debug purposes is essential. In this paper, the authors suggest to partition a Network-on-Chip (NoC) based system into smaller sub-systems...

    Provided By European Design and Automation Association

  • White Papers // Dec 2010

    Optimal Scheduling of Switched FlexRay Networks

    This paper introduces the concept of switched FlexRay networks and proposes two algorithms to schedule data communication for this new type of network. Switched FlexRay networks use an intelligent star coupler, called a switch, to temporarily decouple network branches, thereby increasing the effective network bandwidth. Although scheduling for basic FlexRay...

    Provided By European Design and Automation Association

  • White Papers // Dec 2011

    DRAM Selection and Configuration for Real-Time Mobile Systems

    The performance and power consumption of mobile DRAMs (LPDDRs) depend on the configuration of system-level parameters, such as operating frequency, interface width, request size, and memory map. In mobile systems running both real-time and non-real-time applications, the memory configuration must satisfy bandwidth requirements of real-time applications, meet the power consumption...

    Provided By European Design and Automation Association

  • White Papers // Dec 2011

    Memory-Map Selection for Firm Real-Time SDRAM Controllers

    A modern real-time embedded system must support multiple concurrently running applications. To reduce costs, critical SoC components like SDRAM memories are often shared between applications with a variety of firm real-time requirements. To guarantee that the system works as intended, the memory controller must be configured such that all the...

    Provided By European Design and Automation Association

  • White Papers // Dec 2011

    A TDM NoC Supporting QoS, Multicast, and Fast Connection Set-Up

    Networks-on-Chip are seen as promising interconnect solutions, offering the advantages of scalability and high frequency operation which the traditional bus interconnects lack. Several NoC implementations have been presented in the literature, some of them having mature tool-flows and ecosystems. The main differentiating factor between the various implementations are the services...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Model Driven Resource Usage Simulation for Critical Embedded Systems

    Facing a growing complexity, embedded systems design relies on model-based approaches to ease the exploration of a design space. A key aspect of such exploration is performance evaluation, mainly depending on usage of the hardware resources. In model-driven engineering, hardware resources usage is often approximated by static properties. In this...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    RAG: An Efficient Reliability Analysis of Logic Circuits on Graphics Processing Units

    Reliability analysis, a process of evaluating the effects of errors due to both intrinsic noise and external transients will play an important role for both today's and tomorrow's nanometer-scale circuits. In this paper, the authors present RAG, an efficient Reliability Analysis tool based on Graphics Processing Units (GPU). RAG is...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    CATRA- Congestion Aware Trapezoid-Based Routing Algorithm for On-Chip Networks

    Congestion occurs frequently in Networks-on-Chip (NoC) when the packets demands exceed the capacity of network resources. Congestion-aware routing algorithms can greatly improve the network performance by balancing the traffic load in adaptive routing. Commonly, these algorithms either rely on purely local congestion information or take into account the congestion conditions...

    Provided By European Design and Automation Association

  • White Papers // Feb 2008

    Multi-Vector Tests: A Path to Perfect Error-Rate Testing

    The importance of testing approaches that exploit error tolerance to improve yield has previously been established. Error rate, defined as the percentage of vectors for which the value at a circuit's output deviates from the corresponding error-free value, has been identified as a key metric for severity. In error-rate testing...

    Provided By European Design and Automation Association

  • White Papers // Feb 2008

    Retargetable Code Optimization for Predicated Execution

    Retargetable C compilers are key components of today's embedded processor design platforms for quickly obtaining compiler support and performing early processor architecture exploration. The inherent problem of the retargetable compilation approach, though, is the well known trade-off between the compiler's flexibility and the quality of generated code. However, it can...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    On ESL Verification of Memory Consistency for System-on-Chip Multiprocessing

    Chip multiprocessing is key to mobile and high-end embedded computing. It requires sophisticated multilevel hierarchies where private and shared caches coexist. It relies on hardware support to implicitly manage relaxed program order and write atomicity so as to provide well-defined shared-memory semantics (captured by the axioms of a memory consistency...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    A Clustering-Based Scheme for Concurrent Trace in Debugging NoC-Based Multicore Systems

    Concurrent trace is an emerging challenge when debugging multicore systems. In concurrent trace, trace buffer becomes a bottleneck since all trace sources try to access it simultaneously. In addition, the on-chip interconnection fabric is extremely high hardware cost for the distributed trace signals. In this paper, the authors propose a...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    CACTI-3DD: Architecture-Level Modeling for 3D Die-Stacked DRAM Main Memory

    Modern computer systems demand ever-increasing performance, power-efficiency, and capacity from Dynamic Random Access Memories (DRAMs) to meet system performance requirements. Emerging 3D die-stacked DRAM technology is one of the most promising solutions for future memory architectures to satisfy the ever-increasing demands on performance, power, and cost. This paper introduces CACTI-3DD,...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Off-Path Leakage Power Aware Routing for SRAM-Based FPGAs

    As the feature size and threshold voltage reduce, leakage power dissipation becomes an important concern in SRAM-based FPGAs. This paper focuses on reducing the leakage power in routing resources, and more specifically, the leakage power dissipated in the used part of FPGA device, which is known as the active leakage...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Accurately Timed Transaction Level Models for Virtual Prototyping at High Abstraction Level

    Transaction Level Modeling (TLM) improves the simulation performance by raising the abstraction level. In the TLM 2.0 standard based on OSCI SystemC, a single transaction can transfer a large data block. Due to such high abstraction, a great amount of information becomes invisible and thus timing accuracy can be degraded...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    NOCEVE: Network On Chip Emulation and Verification Environment

    In this paper, the authors present NOCEVE an industrial Network-on-Chip (NoC) emulation and verification environment on industrial large scale multi-FPGA emulation platform for billion cycle application. It helps designer to improve system performance by the analysis of traffic distribution and balance through the network on chip. The hardware monitoring network...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Neighbor-Aware Dynamic Thermal Management for Multi-core Platform

    With the high integration density and complexity of the modern multi-core platform, thermal problems become more and more significant for both the manufacture and system designer. Dynamic thermal management technique is one effective and efficient way to mitigate and avoid thermal emergences. In this paper, the authors propose a novel...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Verifying Timing Synchronization Constraints in Distributed Embedded Architectures

    Correct functioning of automotive embedded controllers requires hard real-time constraints on a number of system parameters. To avoid costly design iterations, these timing constraints should be verified during the design stage itself. In this paper, the authors describe a formal verification technique for a class of timing constraints called timing...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Enabling Dynamic Assertion-based Verification of Embedded Software through Model-driven Design

    Assertion-Based Verification (ABV) is more and more used for verification of embedded systems concerning both HW and SW parts. However, ABV methodologies and tools do not apply to HW and SW components in the same way: for HW components, both static ABV and dynamic ABV are widely used; on the...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Cross Entropy Minimization for Efficient Estimation of SRAM Failure Rate

    As the semiconductor technology scales down to 45nm and below, process variations have a profound effect on SRAM cells and an urgent need is to develop fast statistical tools which can accurately estimate the extremely small failure probability of SRAM cells. In this paper, the authors adopt the Importance Sampling...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Verification Coverage of Embedded Multicore Applications

    Verification of embedded multicore applications is crucial as these applications are deployed in many safety critical systems. Verification task is complicated by concurrency inherent in such applications. The authors use mutation testing to obtain quantitative verification coverage metric for mullticore applications developed using the new Multicore Communication API (MCAPI) standard....

    Provided By European Design and Automation Association

  • White Papers // Jan 2011

    Extending the Lifetime of NAND Flash Memory by Salvaging Bad Blocks

    Flash memory is widely utilized for secondary storage today. However, its further use is hindered by the lifetime issue, which is mainly impacted by wear leveling and Bad Block Management (BBM). Besides initial bad blocks resulting from the manufacturing process, good blocks may eventually wear out due to the limited...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    A Case Study on the Application of Real Phase-Change RAM to Main Memory Subsystem

    Phase-change RAM (PCM) has the advantages of better scaling and non-volatility compared with the DRAM which is expected to face its scaling limit in the near future. There have been many studies on applying the PCM to main memory in order to complement or replace the DRAM. One common limitation...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    VaMV: Variability-Aware Memory Virtualization

    Power consumption variability of both on-chip SRAMs and off-chip DRAMs is expected to continue to increase over the next decades. The authors opportunistically exploit this variability through a novel Variability-aware Memory Virtualization (VaMV) layer that allows programmers to partition their application's address space (through annotations) into virtual address regions and...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Hybrid Simulation for Extensible Processor Cores

    Due to their good flexibility-performance trade-off, Application Specific Instruction-set Processors (ASIPs) have been identified as a valuable component in modern embedded systems, especially the extensible ones, achieving good cost-efficiency trade-offs. Since the generation of the described hardware is usually automated to a high extent, in order to deliver an ASIP-based...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    MOUSSE: Scaling MOdelling and Verification to Complex HeterogeneoUS Embedded Systems Evolution

    The heterogeneity of modern Heterogeneous Embedded Systems (HES) implies different modeling languages, design strategies and optimization methods. Thus, the design of HES cannot be based on a top-down coherent design methodology producing correct-by-construction implementations, but it must be based on the aggregation of pre-designed components through massive reuse of heterogeneous...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Automatic Generation of Functional Models for Embedded Processor Extensions

    Early architectural exploration and design validation are becoming increasingly important for Multi-Processor Systems-on-Chip (MPSoC) designs. Native functional simulations can provide orders of magnitude in speedup over cycle or instruction level simulations but often require dedicated maintenance. In this paper, the authors present a tool called NATIVESIM to automatically generate the...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Using Multi-objective Design Space Exploration to Enable Run-time Resource Management for Reconfigurable Architectures

    Reconfigurable systems represent as a suitable option to meet performance, power, and cost constraints that characterize the challenge of future supercomputing, provided that reconfiguration overhead is balanced with respect to computationally intensive workload. Resource run-time managers have been shown particularly effective for coordinating the usage of the hardware resources by...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Programmability and Performance Portability Aspects of Heterogeneous Multi-/Manycore Systems

    The need to improve the performance/energy ratio has caused a general trend towards increased heterogeneity in multi- and manycore systems, where general-purpose computing cores are complemented with energy-efficient special-purpose accelerators located either on or off-chip, as in, e.g., GPU-supported systems. However, this trend has also brought new, fundamental problems for...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    Component-Based and Aspect-Oriented Methodology and Tool for Real-Time Embedded Control Systems Design

    In this paper, the authors present component-based and aspect-oriented methodology and tool for designing and developing Real-Time Embedded Control Systems (RTECS). This methodology defines a component model for describing modular and reusable software to cope with the increasing complexity of embedded systems. It proposes an aspect-oriented approach to address explicitly...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    An Adaptive Approach for Online Fault Management in Many-Core Architectures

    In this paper, the authors present a dynamic scheduling solution to achieve fault tolerance in many-core architectures. Triple Modular Redundancy is applied on the multi-threaded application to dynamically mitigate the effects of both permanent and transient faults, and to identify and isolate damaged units. The approach targets the best performance,...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    An Hybrid Architecture to Detect Transient Faults in Microprocessors: An Experimental Validation

    Due to performance issues commercial off the shelf components are becoming more and more appealing in application fields where fault tolerant computing is mandatory. As a result, to cope with the intrinsic unreliability of such components against certain fault types like those induced by ionizing radiations, cost-effective fault tolerant architectures...

    Provided By European Design and Automation Association

  • White Papers // Jan 2012

    A Block-Level Flash Memory Management Scheme for Reducing Write Activities in PCM-based Embedded Systems

    In this paper, the authors target at an embedded system with Phase Change Memory (PCM) and NAND flash memory. Although PCM is a promising main memory alternative and is recently introduced to embedded system designs, its endurance keeps drifting down and greatly limits the lifetime of the whole system. Therefore,...

    Provided By European Design and Automation Association