Software

A New Method for Dimensionality Reduction Using KMeans Clustering Algorithm for High Dimensional Data Set

Free registration required

Executive Summary

Clustering is the process of finding groups of objects such that the objects in a group will be similar to one another and different from the objects in other groups. Dimensionality reduction is the transformation of high-dimensional data into a meaningful representation of reduced dimensionality that corresponds to the intrinsic dimensionality of the data. K-means clustering algorithm often does not work well for high dimension, hence, to improve the efficiency, apply PCA on original data set and obtain a reduced dataset containing possibly uncorrelated variables. In this paper principal component analysis and linear transformation is used for dimensionality reduction and initial centroid is computed, then it is applied to K-Means clustering algorithm.

  • Format: PDF
  • Size: 210.95 KB