A New Statistical Approach to Network Anomaly Detection

In the last few years, the number and impact of security attacks over the Internet have been continuously increasing. To face this issue, the use of Intrusion Detection Systems (IDSs) has emerged as a key element in network security. In this paper the authors address the problem considering a novel statistical technique for detecting network anomalies. Their approach is based on the use of different families of Markovian models (namely high order and non homogeneous Markov chains) for modeling network traffic running over TCP. The performance results shown in the paper justify the proposed method and highlight the improvements over commonly used statistical techniques.

Provided by: University of Pisa Topic: Security Date Added: Nov 2010 Format: PDF

Find By Topic