A Novel ACO Technique for Fast and Near Optimal Solutions for the Multi-Dimensional Multi-Choice Knapsack Problem

Download Now Date Added: Dec 2010
Format: PDF

In this paper, the authors have proposed a novel algorithm based on Ant Colony Optimization (ACO) for finding near-optimal solutions for the Multi-dimensional Multi-choice Knapsack Problem (MMKP). MMKP is a discrete optimization problem, which is a variant of the classical 0-1 Knapsack Problem and is also an NP-hard problem. Due to its high computational complexity, exact solutions of MMKP are not suitable for most real-time decision making applications e.g. QoS and Admission Control for Adaptive Multimedia Systems, Service Level Agreement (SLA) etc. Although ACO algorithms are known to have scalability and slow convergence issues, here they have augmented the traditional ACO algorithm with a unique random local search, which not only produces near-optimal solutions but also greatly enhances convergence speed.