A Unified Framework for Biometric Expert Fusion Incorporating Quality Measures

This paper proposes a unified framework for quality-based fusion of multimodal biometrics. Quality-dependent fusion algorithms aim to dynamically combine several classifier (biometric expert) outputs as a function of automatically derived (biometric) sample quality. Quality measures used for this purpose quantify the degree of conformance of biometric samples to some predefined criteria known to influence the system performance. Designing a fusion classifier to take quality into consideration is difficult because quality measures cannot be used to distinguish genuine users from impostors, i.e., they are non-discriminative; yet, still useful for classification.

Provided by: University of Surrey Topic: Security Date Added: Apr 2011 Format: PDF

Find By Topic