An Empirical Comparison of Automated Generation and Classification Techniques for Object-Oriented Unit Testing

Testing involves two major activities: generating test inputs and determining whether they reveal faults. Automated test generation techniques include random generation and symbolic execution. Automated test classification techniques include ones based on uncaught exceptions and violations of operational models inferred from manually provided tests. Previous research on unit testing for object-oriented programs developed three pairs of these techniques: model-based random testing, exception-based random testing, and exception-based symbolic testing. The authors develop a novel pair, model-based symbolic testing. They also empirically compare all four pairs of these generation and classification techniques. The results show that the pairs are complementary (i.e., Reveal faults differently), with their respective strengths and weaknesses.

Provided by: University of Illinois Topic: Software Date Added: Jan 2011 Format: PDF

Find By Topic