Software Investigate

An Ensemble-Based Approach to Fast Classification of Multi-Label Data Streams

Download now Free registration required

Executive Summary

Network operators are continuously confronted with online events, such as online messages, blog updates, etc. Due to the huge volume of these events and the fast changes of the topics, it is critical to manage them promptly and effectively. There have been many softwares and algorithms developed to conduct automatic classification over these stream data. Conventional approaches focus on single-label scenarios, where each event can only be tagged with one label. However, in many stream data, each event can be tagged with more than one labels. Effective stream classification systems should be able to consider the unique properties of multi-label stream data, such as large data volumes, label correlations and concept drifts.

  • Format: PDF
  • Size: 160.32 KB