Analysis and Optimization of a Frequency-Hopping Ad Hoc Network in Rayleigh Fading

This paper proposes a new method for optimizing frequency-hopping ad hoc networks in the presence of Rayleigh fading. It is assumed that the system uses a capacity-approaching code (e.g., turbo or LDPC) and non-coherent binary Continuous-Phase Frequency-Shift Keying (CPFSK) modulation. By using transmission capacity as the performance metric, the number of hopping channels, CPFSK modulation index, and code rate are jointly optimized. Mobiles in the network are assumed to be uniformly located within a finite area. Closed-form expressions for outage probability are given for a network characterized by a physical interference channel. The outage probability is first found conditioned on the locations of the mobiles, and then averaged over the spatial distribution of the mobiles.

Provided by: West Virginia University Topic: Mobility Date Added: Jul 2012 Format: PDF

Find By Topic