Analysis of Time Domain Information for Footstep Recognition

This paper reports an experimental analysis of footsteps as a biometric. The focus here is on information extracted from the time domain of signals collected from an array of piezoelectric sensors. Results are related to the largest footstep database collected to date, with almost 20,000 valid footstep signals and more than 120 persons, which is well beyond previous related databases. Three feature approaches have been extracted, the popular Ground Reaction Force (GRF), the spatial average and the upper and lower contours of the pressure signals. Experimental work is based on a verification mode with a holistic approach based on PCA and SVM, achieving results in the range of 5 to 15% EER depending on the experimental conditions of quantity of data used in the reference models.

Provided by: Springer Science+Business Media Topic: Security Date Added: Nov 2010 Format: PDF

Find By Topic