Business Intelligence

Approximate K-Nearest Neighbour Based Spatial Clustering Using K-D Tree

Download Now Free registration required

Executive Summary

Different spatial objects that vary in their characteristics, such as molecular biology and geography, are presented in spatial areas. Methods to organize, manage and maintain those objects in a structured manner are required. Data mining raised different techniques to overcome these requirements. There are many major tasks of data mining, but the mostly used task is clustering. Data set within the same cluster share common features that give each cluster its characteristics. In this paper, an implementation of Approximate kNN-based spatial clustering algorithm using the K-d tree is proposed. The major contribution achieved by this paper is the use of the k-d tree data structure for spatial clustering and comparing its performance to the brute-force approach.

  • Format: PDF
  • Size: 207.8 KB