Automatic Modulation Recognition Using Wavelet Transform and Neural Networks in Wireless Systems

Modulation type is one of the most important characteristics used in signal waveform identification. In this paper, an algorithm for automatic digital modulation recognition is proposed. The proposed algorithm is verified using Higher-Order statistical Moments (HOM) of Continuous Wavelet Transform (CWT) as features set. A multilayer feed-forward neural network trained with resilient backpropagation learning algorithm is proposed as a classifier. The purpose is to discriminate among different M-ary shift keying modulation schemes and the modulation order without any priori signal information. Pre-processing and features subset selection using principal component analysis is used to reduce the network complexity and to improve the classifier's performance.

Provided by: Concordia University Topic: Mobility Date Added: Dec 2010 Format: PDF

Find By Topic