Black-Box Problem Diagnosis in Parallel File Systems

The authors focus on automatically diagnosing different performance problems in parallel file systems by identifying, gathering and analyzing OS-level, black-box performance metrics on every node in the cluster. The peer-comparison diagnosis approach compares the statistical attributes of these metrics across I/O servers, to identify the faulty node. The authors develop a root-cause analysis procedure that further analyzes the affected metrics to pinpoint the faulty resource (storage or network), and demonstrate that this approach works commonly across stripe-based parallel file systems. They demonstrate the approach for realistic storage and network problems injected into three different file-system benchmarks (dd, IOzone, and Post-Mark), in both PVFS and Lustre clusters.

Provided by: Carnegie Mellon University Topic: Networking Date Added: Feb 2010 Format: PDF

Download Now

Find By Topic