Business Intelligence

Continuous Monitoring of Distance-Based Outliers Over Data Streams

Free registration required

Executive Summary

Anomaly detection is considered an important data mining task, aiming at the discovery of elements (also known as outliers) that show significant diversion from the expected case. More specifically, given a set of objects the problem is to return the suspicious objects that deviate significantly from the typical behavior. As in the case of clustering, the application of different criteria leads to different definitions for an outlier. In this paper, the authors focus on distance-based outliers: an object x is an outlier if there are less than k objects lying at distance at most R from x. The problem offers significant challenges when a stream-based environment is considered, where data arrive continuously and outliers must be detected on-the-fly.

  • Format: PDF
  • Size: 320.78 KB