Controlling False Positives in Association Rule Mining

Association rule mining is an important problem in the data mining area. It enumerates and tests a large number of rules on a dataset and outputs rules that satisfy user-specified constraints. Due to the large number of rules being tested, rules that do not represent real systematic effect in the data can satisfy the given constraints purely by random chance. Hence association rule mining often suffers from a high risk of false positive errors. There is a lack of comprehensive study on controlling false positives in association rule mining.

Provided by: VLD Digital Topic: Data Management Date Added: Aug 2012 Format: PDF

Find By Topic