Data Management

DBrev: Dreaming of a Database Revolution

Download Now Free registration required

Executive Summary

The database community has provided excellent frameworks for efficient querying and online transaction or analytical processing. The main assumption underlying most of these frameworks is that there is no uncertainty regarding the stored data. However, in recent years, many important applications have emerged that need to manage noisy, corrupted, or incomplete data. This includes, e.g., anonymized data, data derived from sensor systems, or data from information extraction and integration systems. For such applications the assumption of logical consistency may not be valid and needs to be revised. In particular, techniques like probabilistic modeling and statistical inference may be necessary to be able to draw meaningful conclusions from the underlying data.

  • Format: PDF
  • Size: 705.2 KB