Demand Forecast and Performance Prediction in Peer-Assisted On-Demand Streaming Systems

Peer-assisted on-demand video streaming services are extremely large-scale distributed systems on the Internet. Automated demand forecast and performance prediction, if implemented, can help with capacity planning and quality control so that sufficient server bandwidth can always be supplied to each video channel without incurring wastage. In this paper, the authors use time-series analysis techniques to automatically predict the online population, the peer upload and the server bandwidth demand in each video channel, based on the learning of both human factors and system dynamics from online measurements. The proposed mechanisms are evaluated on a large dataset collected from a commercial Internet video-on-demand system.

Provided by: University of Toronto Topic: Networking Date Added: Jan 2011 Format: PDF

Find By Topic