Differentially Private Histogram Publishing through Lossy Compression

Differential privacy has emerged as one of the most promising privacy models for private data release. It can be used to release different types of data, and, in particular, histograms, which provide useful summaries of a dataset. Several differentially private histogram releasing schemes have been proposed recently. However, most of them directly add noise to the histogram counts, resulting in undesirable accuracy. In this paper, the authors propose two sanitization techniques that exploit the inherent redundancy of real-life datasets in order to boost the accuracy of histograms. They lossily compress the data and sanitize the compressed data.

Provided by: INRIA Topic: Security Date Added: Oct 2012 Format: PDF

Find By Topic