Discovering Reference Models by Mining Process Variants Using a Heuristic Approach

Recently, a new generation of adaptive Process-Aware Information Systems (PAISs) has emerged, which enables structural process changes during runtime. Such flexibility, in turn, leads to a large number of process variants derived from the same model, but differing in structure. Generally, such variants are expensive to configure and maintain. This paper provides a heuristic search algorithm which fosters learning from past process changes by mining process variants. The algorithm discovers a reference model based on which the need for future process configuration and adaptation can be reduced. It additionally provides the flexibility to control the process evolution procedure, i.e., the authors can control to what degree the discovered reference model differs from the original one.

Provided by: University of Tuzla Topic: Big Data Date Added: Jun 2009 Format: PDF

Find By Topic