Hardware

Disguised-Face Discriminator for Embedded Systems

Free registration required

Executive Summary

In this paper, the authors introduce an improved Adaptive Boosting (AdaBoost) classifier and its application, a disguised-face discriminator that discriminates between bare and disguised faces. The proposed classifier is based on an AdaBoost learning algorithm and regression technique. In the process, the lookup table of AdaBoost learning is utilized. The proposed method is verified on the captured images under several real environments. Experimental results and analysis show the proposed method has a higher and faster performance than other well-known methods.

  • Format: PDF
  • Size: 848.81 KB