Dynamic Fine-Grain Scheduling of Pipeline Parallelism

Scheduling pipeline-parallel programs, defined as a graph of stages that communicate explicitly through queues, is challenging. When the application is regular and the underlying architecture can guarantee predictable execution times, several techniques exist to compute highly optimized static schedules. However, these schedules do not admit run-time load balancing, so variability introduced by the application or the underlying hardware causes load imbalance, hindering performance. On the other hand, existing schemes for dynamic fine-grain load balancing (such as task-stealing) do not work well on pipeline-parallel programs: they cannot guarantee memory footprint bounds, and do not adequately schedule complex graphs or graphs with ordered queues.

Provided by: Stanford University Topic: Networking Date Added: Aug 2011 Format: PDF

Find By Topic