Frequent Itemset Mining for Big Data

Frequent Itemset Mining (FIM) is one of the most well known techniques to extract knowledge from data. The combinatorial explosion of FIM methods become even more problematic when they are applied to big data. Fortunately, recent improvements in the field of parallel programming already provide good tools to tackle this problem. However, these tools come with their own technical challenges, e.g. balanced data distribution and inter-communication costs. In this paper, the authors investigate the applicability of FIM techniques on the MapReduce platform.

Provided by: University of Anbar Topic: Big Data Date Added: Sep 2013 Format: PDF

Find By Topic