Security

Hardness of Decision (R) LWE for Any Modulus

Download Now Free registration required

Executive Summary

The decision Learning With Errors problem has proven an extremely flexible foundation for devising provably secure cryptographic primitives. This modulus q is the subject of study of the present work. When q is prime and small, or when it is exponential and composite with small factors, LWE is known to be at least as hard as standard worst-case problems over euclidean lattices (sometimes using quantum reductions). The Ring Learning With Errors problem is a structured variant of LWE allowing for more compact keys and more efficient primitives. It is known to be at least as hard as standard worst-case problems restricted to so-called ideal lattices, but under even more restrictive arithmetic conditions on q.

  • Format: PDF
  • Size: 591.49 KB