Hybrid In-Database Inference for Declarative Information Extraction

In the database community, work on Information Extraction (IE) has centered on two themes: how to effectively manage IE tasks, and how to manage the uncertainties that arise in the IE process in a scalable manner. Recent work has proposed a Probabilistic DataBase (PDB) based declarative IE system that supports a leading statistical IE model, and an associated inference algorithm to answer top-k-style queries over the probabilistic IE outcome. Still, the broader problem of effectively supporting general probabilistic inference inside a PDB-based declarative IE system remains open. In this paper, the authors explore the in-database implementations of a wide variety of inference algorithms suited to IE, including two Markov chain Monte Carlo algorithms, Viterbi and sum-product algorithms.

Provided by: Association for Computing Machinery Topic: Data Management Date Added: Apr 2011 Format: PDF

Find By Topic