Identifying Important Action Primitives for High Level Activity Recognition

Smart homes have a user centered design that makes human activity as the most important type of context to adapt the environment according to people's needs. Sensor systems that include a variety of ambient, vision based, and wearable sensors are used to collect and transmit data to reasoning algorithms to recognize human activities at different levels of abstraction. Despite various types of action primitives are extracted from sensor data and used with state of the art classification algorithms there is little understanding of how these action primitives affect high level activity recognition.

Provided by: Springer Science+Business Media Topic: Software Date Added: Nov 2010 Format: PDF

Find By Topic