Improving Direct Marketing Profitability with Neural Networks

Data mining in direct marketing aims at identifying the most promising customers to send targeted advertising. Traditionally, statistical models are used to make such a selection. The success of statistical models depends on the validity of certain assumptions about data distribution. Artificial Intelligence inspired models, such as genetic algorithms and neural networks, do not need those assumptions. In this paper, the authors test neural networks with real-world direct marketing data. Neural networks are used for performance maximization at various mailing depth. Compared with statistical models, such as logistic regression and ordinary least squares regression, the neural network models provide more balanced outcome with respect to the two performance measures: the potential revenue and the churn likelihood of a customer.

Provided by: International Journal of Computer Applications Topic: Big Data Date Added: Sep 2011 Format: PDF

Find By Topic