Mobility

Learning-Based Spectrum Selection in Cognitive Radio Ad Hoc Networks

Download Now Free registration required

Executive Summary

Cognitive Radio Ad Hoc Networks (CRAHNs) must identify the best operational characteristics based on the local spectrum availability, reachability with other nodes, choice of spectrum, while maintaining an acceptable end-to-end performance. The distributed nature of the operation forces each node to act autonomously, and yet has a goal of optimizing the overall network performance. These unique characteristics of CRAHNs make Reinforcement Learning (RL) techniques an attractive choice as a tool for protocol design. In this paper, the authors survey the state-of-the-art in the existing RL schemes that can be applied to CRAHNs, and propose modifications from the viewpoint of routing, and link layer spectrum-aware operations.

  • Format: PDF
  • Size: 285.5 KB