id="info"

Learning-Based Spectrum Sensing for Cognitive Radio Systems

In this paper, the authors present a novel pattern recognition approach to spectrum sensing in collaborative cognitive radio systems. In the proposed scheme, discriminative features from the received signal are extracted at each node and used by a classifier at a central node to make a global decision about the availability of spectrum holes for use by the cognitive radio network. Specifically, linear and polynomial classifiers are proposed with energy, cyclostationary, or coherent features. Simulation results in terms of detection and false alarm probabilities of all proposed schemes are presented. It is concluded that cyclostationary-based schemes are the most reliable in terms of detecting primary users in the spectrum, however, at the expense of a longer sensing time compared to coherent based schemes.

Provided by: Hindawi Publishing Topic: Mobility Date Added: Nov 2012 Format: PDF

Find By Topic