Cloud

MapReduce in the Clouds for Science

Download Now Free registration required

Executive Summary

The utility computing model introduced by cloud computing combined with the rich set of cloud infrastructure services offers a very viable alternative to traditional servers and computing clusters. MapReduce distributed data processing architecture has become the weapon of choice for data-intensive analyses in the clouds and in commodity clusters due to its excellent fault tolerance features, scalability and the ease of use. Currently, there are several options for using MapReduce in cloud environments, such as using MapReduce as a service, setting up one's own MapReduce cluster on cloud instances, or using specialized cloud MapReduce runtimes that take advantage of cloud infrastructure services.

  • Format: PDF
  • Size: 711.25 KB