Multi-Objective K-Connected Deployment and Power Assignment in WSNs Using a Problem-Specific Constrained Evolutionary Algorithm Based on Decomposition

The K-connected Deployment and Power Assignment Problem (DPAP) in WSNs aims at deciding both the sensor locations and transmit power levels, for maximizing the network coverage and lifetime objectives under K-connectivity constraints, in a single run. Recently, it is shown that the Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) is a strong enough tool for dealing with unconstraint real life problems (such as DPAP), emphasizing the importance of incorporating problem-specific knowledge for increasing its efficiency. In a constrained Multi-objective Optimization Problem (such as K-connected DPAP), the search space is divided into feasible and infeasible regions. Therefore, problem-specific operators are designed for MOEA/D to direct the search into optimal, feasible regions of the space.

Provided by: Reed Elsevier Topic: Mobility Date Added: Sep 2010 Format: PDF

Find By Topic