Multi-Sensor Data Merging with Stacked Neural Networks for the Creation of Satellite Long-Term Climate Data Records

Date Added: Jun 2012
Format: PDF

This paper presents a novel artificial neural network technique for merging multi-sensor satellite data. Stacked Neural Networks (NNs) are used to learn the temporal and spatial drifts between data from different satellite sensors. The resulting NNs are then used to sequentially adjust the satellite data for the creation of a global homogeneous long-term climate data record. The proposed technique has successfully been applied to the merging of ozone data from three European satellite sensors covering together a time period of more than 16 years.