Business Intelligence

Nonlinear Cointegrating Regression Under Weak Identification

Free registration required

Executive Summary

An asymptotic theory is developed for a weakly identified cointegrating regression model in which the regressor is a nonlinear transformation of an integrated process. Weak identification arises from the presence of a loading coefficient for the nonlinear function that may be close to zero. In that case, standard nonlinear cointegrating limit theory does not provide good approximations to the finite sample distributions of nonlinear least squares estimators, resulting in potentially misleading inference. A new local limit theory is developed that approximates the finite sample distributions of the estimators uniformly well irrespective of the strength of the identification.

  • Format: PDF
  • Size: 365.5 KB