On Saying "Enough Already!" in MapReduce

The MapReduce framework for parallel processing of massive data sets has attracted considerable attention recently, mainly due to its salient features that include scalability, simplicity, and fault-tolerance. However, despite its merits, MapReduce follows a brute-force approach, which often results in performing redundant work. This is particularly evident in the case of rank-aware queries, such as top-k, where a bounded set of k tuples comprise the result set. To process such queries in MapReduce, the input data needs to be accessed in its entirety, in order to produce the correct result set. To address this limitation of lack of early termination, in this paper, the authors investigate on different techniques that allow efficient processing of rank-aware queries, without accessing the input data exhaustively.

Provided by: Association for Computing Machinery Topic: Data Management Date Added: Aug 2012 Format: PDF

Find By Topic