On Sparse Nonparametric Conditional Covariance Selection

The authors develop a penalized kernel smoothing method for the problem of selecting nonzero elements of the conditional precision matrix, known as conditional covariance selection. This problem has a key role in many modern applications such as finance and computational biology. However, it has not been properly addressed. The estimator is derived under minimal assumptions on the underlying probability distribution and works well in the high-dimensional setting. The efficiency of the algorithm is demonstrated on both simulation studies and the analysis of the stock market.

Provided by: Carnegie Mellon University Topic: Software Date Added: May 2010 Format: PDF

Download Now

Find By Topic