Quantum Memory Hierarchies: Efficient Designs to Match Available Parallelism in Quantum Computing

The assumption of maximum parallelism support for the successful realization of scalable quantum computers has led to homogeneous, "Sea-of-qubits" architectures. The resulting architectures overcome the primary challenges of reliability and scalability at the cost of physically unacceptable system area. The authors find that by exploiting the natural serialization at both the application and the physical microarchitecture level of a quantum computer, they can reduce the area requirement while improving performance. In particular the authors present a scalable quantum architecture design that employs specialization of the system into memory and computational regions, each individually optimized to match hardware support to the available parallelism.

Provided by: UC Regents Topic: Data Centers Date Added: Jan 2011 Format: PDF

Find By Topic