IT Policies

Runtime Prediction of Service Level Agreement Violations for Composite Services

Free registration required

Executive Summary

SLAs are contractually binding agreements between service providers and consumers, mandating concrete numerical target values which the service needs to achieve. For service providers, it is essential to prevent SLA violations as much as possible to enhance customer satisfaction and avoid penalty payments. Therefore, it is desirable for providers to predict possible violations before they happen, while it is still possible to set counteractive measures. The paper proposes an approach for predicting SLA violations at runtime, which uses measured and estimated facts (instance data of the composition or QoS of used services) as input for a prediction model. The prediction model is based on ma-chine learning regression techniques, and trained using historical process instances.

  • Format: PDF
  • Size: 500.8 KB