Security

Scaling Up Classiers to Cloud Computers

Download Now Free registration required

Executive Summary

As the size of available datasets has grown from Megabytes to Gigabytes and now into Terabytes, machine learning algorithms and computing infrastructures have continuously evolved in an effort to keep pace. But at large scales, mining for useful patterns still presents challenges in terms of data management as well as computation. These issues can be addressed by dividing both data and computation to build ensembles of classifiers in a distributed fashion, but trade-offs in cost, performance, and accuracy must be considered when designing or selecting an appropriate architecture.

  • Format: PDF
  • Size: 214.4 KB