Sensor Selection to Support Practical Use of Health-Monitoring Smart Environments

The data mining and pervasive sensing technologies found in smart homes offer unprecedented opportunities for providing health monitoring and assistance to individuals experiencing difficulties living independently at home. In order to monitor the functional health of smart home residents, the authors need to design technologies that recognize and track activities that people normally perform as part of their daily routines. One question that frequently arises, however, is how many smart home sensors are needed and where should they be placed in order to accurately recognize activities? They employ data mining techniques to look at the problem of sensor selection for activity recognition in smart homes. They analyze the results based on six data sets collected in five distinct smart home environments.

Provided by: Washington State University Topic: Big Data Date Added: Oct 2010 Format: PDF

Find By Topic