Signal Detection for Cognitive Radios With Smashed Filtering

Free registration required

Executive Summary

Compressed Sensing and the related recently introduced Smashed Filter are novel signal processing methods, which allow for low-complexity parameter estimation by projecting the signal under analysis on a random subspace. In this paper the Smashed Filter of Davenport et al. is applied to a principal problem of digital communications: pilot-based time offset and frequency offset estimation. An application, motivated by current Cognitive Radio research, is wide-band detection of a narrowband signal, e.g. to synchronize terminals without prior channel or frequency allocation. Smashed Filter estimation and maximum likelihood-based, uncompressed estimation for a signal corrupted by additive white Gaussian noise (Matched Filter estimation) are compared.

  • Format: PDF
  • Size: 179.5 KB