Solving the Multi-Dimensional Multi-Choice Knapsack Problem With the Help of Ants

In this paper, the authors have proposed two novel algorithms based on Ant Colony Optimization (ACO) for finding near-optimal solutions for the Multi-dimensional Multi-choice Knapsack Problem (MMKP). MMKP is a discrete optimization problem, which is a variant of the classical 0-1 Knapsack Problem and is also an NP-hard problem. Due to its high computational complexity, exact solutions of MMKP are not suitable for most real-time decision-making applications e.g. QoS and Admission Control for Adaptive Multimedia Systems, Service Level Agreement (SLA) etc. Although ACO algorithms are known to have scalability and slow convergence issues, here they have augmented the traditional ACO algorithm with a unique random local search, which not only produces near-optimal solutions but also greatly enhances convergence speed.

Provided by: Springer Healthcare Topic: Mobility Date Added: Sep 2010 Format: PDF

Find By Topic