Spatio-Temporal Joins on Symbolic Indoor Tracking Data

To facilitate a variety of applications, positioning systems are deployed in indoor settings. For example, Bluetooth and RFID positioning are deployed in airports to support real-time monitoring of delays as well as off-line flow and space usage analyses. Such deployments generate large collections of tracking data. Like in other data management applications, joins are indispensable in this setting. However, joins on indoor tracking data call for novel techniques that take into account the limited capabilities of the positioning systems as well as the specifics of indoor spaces. This paper proposes and studies probabilistic, spatio-temporal joins on historical indoor tracking data. Two meaningful types of join are defined. They return object pairs that satisfy spatial join predicates either at a time point or during a time interval.

Provided by: Institute of Electrical & Electronic Engineers Topic: Mobility Date Added: Mar 2011 Format: PDF

Find By Topic