Stability And Fairness In Models With A Multiple Membership

This paper studies a model of coalition formation for the joint production (and finance) of public projects, in which agents may belong to multiple coalitions. The authors show that, if projects are divisible, there always exists a stable (secession-proof) structure, i.e., a structure in which no coalition would reject a proposed arrangement. When projects are in-divisible, stable allocations may fail to exist and, for those cases, they resort to the least core in order to estimate the degree of instability. They also examine the compatibility of stability and fairness on metric environments with indivisible projects. To do so, they explore, among other things, the performance of several well-known solutions (such as the Shapley value, the nucleolus, or the Dutta-Ray value) in these environments.

Provided by: Universite Catholique de Louvain Topic: Project Management Date Added: Dec 2010 Format: PDF

Find By Topic