Superhedging And Dynamic Risk Measures Under Volatility Uncertainty

The authors consider dynamic sublinear expectations (i.e., time-consistent coherent risk measures) whose scenario sets consist of singular measures corresponding to a general form of volatility uncertainty. They derive a c?dl?g nonlinear martingale which is also the value process of a superhedging problem. The superhedging strategy is obtained from a representation similar to the optional decomposition. Furthermore, they prove an optional sampling theorem for the nonlinear martingale and characterize it as the solution of a second order backward SDE. The uniqueness of dynamic extensions of static sublinear expectations is also studied.

Provided by: ETH Zurich Topic: Data Management Date Added: Nov 2010 Format: PDF

Find By Topic