The Hamiltonicity of Crossed Cubes in the Presence of Faults

The crossed cube is considered as one of the most promising variations of the hypercube topology, due to its ability of preserving many of the attractive properties of the hypercube and reducing the diameter by a factor of two. In this paper, the authors show the robustness capability of the crossed cube in constructing a Hamiltonian circuit despite the presence of faulty nodes or edges. Their result is optimal in the fact that it constructs the Hamiltonian circuit by avoiding only faulty nodes and edges in a crossed hypercube of dimension n. Their algorithm can tolerate up to 2n-3 faults with the restriction that each sub cube CQ3 has at most one faulty node.

Provided by: Zarph Corp. Topic: Hardware Date Added: Aug 2008 Format: PDF

Find By Topic