WATS: Workload-Aware Task Scheduling in Asymmetric Multi-Core Architectures

Asymmetric Multi-Core (AMC) architectures have shown high performance as well as power efficiency. However, current parallel programming environments do not perform well on AMC due to their assumption that all cores are symmetric and provide equal performance. Their random task scheduling policies, such as task-stealing, can result in unbalanced workloads in AMC and severely degrade the performance of parallel applications. To balance the workloads of parallel applications in AMC, this paper proposes a Workload-Aware Task Scheduling (WATS) scheme that adopts history based task allocation and preference-based task stealing. The history-based task allocation is based on a near-optimal, static task allocation using the historical statistics collected during the execution of a parallel application.

Provided by: Shanghai Institute of Applied Physics, Chinese Academy of Sciences Topic: Data Centers Date Added: Nov 2011 Format: PDF

Find By Topic