Weighted and Structured Sparse Total Least-Squares for Perturbed Compressive Sampling

Date Added: Feb 2011
Format: PDF

Solving linear regression problems based on the Total Least-Squares (TLS) criterion has well-documented merits in various applications, where perturbations appear both in the data vector as well as in the regression matrix. Weighted and structured generalizations of the TLS approach are further motivated in several signal processing and system identification related problems. On the other hand, modern compressive sampling and variable selection algorithms account for perturbations of the data vector, but not those affecting the regression matrix. The paper addresses also the latter by introducing a weighted and Structured sparse (S-) TLS formulation to exploit a priori knowledge on both types of perturbations, and on the sparsity of the unknown vector.