A Denial of Service Detector Based on Maximum Likelihood Detection and the Random Neural Network

Download Now
Provided by: Oxford University Press
Topic: Security
Format: PDF
Due to the simplicity of the concept and the availability of attack tools, launching a DoS attack is relatively easy, while defending a network resource against it is disproportionately difficult. The first step of a protection scheme against DoS must be the detection of its existence, ideally before the destructive traffic build-up. In this paper, the authors propose a DoS detection approach which uses the maximum likelihood criterion with the Random Neural Network (RNN). Their method is based on measuring various instantaneous and statistical variables describing the incoming network traffic, acquiring a likelihood estimation and fusing the information gathered from the individual input features using likelihood averaging and different architectures of RNNs.
Download Now

Find By Topic