A Flexible Real-Time Locking Protocol for Multiprocessors

Real-time scheduling algorithms for multiprocessor systems have been the subject of considerable recent interest. For such an algorithm to be truly useful in practice, support for semaphore-based locking must be provided. However, for many global scheduling algorithms, no such mechanisms have been proposed. Furthermore, in the partitioned case, most prior semaphore schemes are either inefficient or restrict critical sections considerably. In this paper, a new flexible multiprocessor locking scheme is presented that can be applied under both partitioning and global scheduling. This scheme allows unrestricted critical-section nesting, but has been designed to deal with the common case of short non-nested accesses efficiently.

Provided by: University of North Alabama Topic: Data Centers Date Added: Jan 2013 Format: PDF

Find By Topic