A Framework for Quality-Based Biometric Classifier Selection

Multi-biometric systems fuse the evidence (e.g., match scores) pertaining to multiple biometric modalities or classifiers. Most score-level fusion schemes discussed in the literature require the processing (i.e., feature extraction and matching) of every modality prior to invoking the fusion scheme. This paper presents a framework for dynamic classifier selection and fusion based on the quality of the gallery and probe images associated with each modality with multiple classifiers. The quality assessment algorithm for each biometric modality computes a quality vector for the gallery and probe images that is used for classifier selection. These vectors are used to train Support Vector Machines (SVMs) for decision making.

Provided by: West Virginia University Topic: Security Date Added: Aug 2011 Format: PDF

Find By Topic