Analysis of Dynamic Data Placement Strategy for Heterogeneous Hadoop Cluster

MapReduce has become a very important distributed process model for large scale data-intensive applications like Web data and data mining. Hadoop is an open source implementation of MapReduce is wide used for large data processing which requires low time response. This paper, address the matter of approach to place data across nodes in an exceedingly way that every node contains a balanced processing load. Given a data intensive application running on a Hadoop MapReduce cluster, the authors’ data placement theme adaptively balances the number of knowledge hold on in every node to realize improved data-processing performance.

Subscribe to the Data Insider Newsletter

Learn the latest news and best practices about data science, big data analytics, artificial intelligence, data security, and more. Delivered Mondays and Thursdays

Subscribe to the Data Insider Newsletter

Learn the latest news and best practices about data science, big data analytics, artificial intelligence, data security, and more. Delivered Mondays and Thursdays

Resource Details

Provided by:
International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Topic:
Big Data
Format:
PDF